
Mobile Forensics:

Comparison of extraction and analyzing methods of iOS and Android

Dmitrijs Abalenkovs, Petro Bondarenko, Vijay Kumarraju Pathapati, André Nordbø, Dmytro
Piatkivskyi, John Erik Rekdal, and Pieter Bloemerus Ruthven

Digial Forensics I
Master in Information Security,

Gjøvik University College

December 6, 2012

Abstract

This paper will explore methods for getting access to, extracting and initial analyzing non-volatile stored
data from mobile smart devices in the light of the forensic principles like evidence integrity, evidence dynam-
ics, chain of custody and order of volatility. The goal of this paper is to present current work on extraction
methods and secondly how to do the initial analysis of the data extracted in order to compare the known
methods between the chosen devices.

Introduction

Mobile smart devices come in many flavors.
They have evolved from different sources like mobile
phones, laptops and music players into ”smart” mo-
bile devices of different sizes. Apple’s iPod, iPad and
iPhone have a lot in common. They share the iOS
operating system, applications and the main differ-
ence between them is how they connect to the rest of
the world and what additional features they got. An-
droid is a Linux based operating system developed
by Google, available on a variety of hardware pro-
duced by 3rd party companies. iOS is only available
for Apple devices.

Different reasons for trying to get access to data
on a mobile device can be motivated by trying to
install pirated software or otherwise circumvent re-
strictions, install malicious code, perform backups,
restore incidental deleted files, verifying security fea-
tures or extracting data for forensics analysis. The
requirements for the extraction methods in use de-
pend on the goal.

The Event-based digital forensic investigation
framework in [1] describes a phased model of readi-
ness, deployment, crime scene investigation and pre-
sentation. The readiness is the pre-crime prepara-
tion phase. It is described as setting up logging,
developing and testing tools. A detection followed
by confirmation leads to a crime scene investigation.
The deployment phase has to consider legal require-

ments, and when it is started, three important steps
are performed: preservation, searching for evidence
and reconstructing events. Documentation is essen-
tial. The last phase is presentation of the findings,
often in court.

Figure 1: Summary of framework, based on [1]

Digital evidence is said to be a subset of physi-
cal evidence, and the same methods apply. One of
the main differences between physical and digital ev-
idence is the possibility of making an exact duplicate
of the crime scene, and at the same time the danger
of transferring analogies from the physical to the dig-
ital domain. The authors question the real need for
an exact bit for bit copy of all digital objects with
this contra analogy:

”Fingerprints are lifted from walls at a

1

crime scene, but the wall is not seized as
evidence.” [1]

The integrity of preserved data must be assured
by applying hashing algorithms. Targets must be
identified and searched for, matches must be verified
and put in context with other digital and physical
evidence. Hypothesis are created and tested against
the available digital evidence.

In the following sections we will have a quick
look at some background, followed by one sections
for each of Android and iOS, both divided in 4 sub-
sections: Relevant security features, accessing and
dumping data, initial analysis of extracted data and
experimentation. And finally a conclusion.

Background
In traditional digital forensics computers are

turned off, storage medium imaged and hashed for
off-line analysis. Known operating system like Win-
dows, OS X and Linux have been studied for years
and we know a great deal of how to extract data and
what information structures are used. Automated
tools have been developed to support these tasks.
During the last few years, smart mobile devices have
hit the market. They assume tasks traditionally be-
ing performed on personal computers, they are mo-
bile and always connected. It is assumed they con-
tain a lot of forensically important traces, both be-
cause they can be tightly connected to an individ-
ual and at the same time can be connected to many
of the same services traditionally used on laptops
and desktops. Examples may include access to on-
line storage, e-mail accounts, photographs, video and
sound recordings, notes and documents, geographic
data, Internet usage, chat sessions, social networking
services [2] and game statistics.

A mobile smart device, just like personal com-
puters, have volatile memory, processing unit and
permanent storage. Permanent storage might in-
clude internal storage, and removable memory
cards. Examples of communication are via WiFi,
3G/4G/EDGE/GSM etc, bluetooth, infrared (IR),
near field communication (NFC) or via a serial bus
interface commonly utilizing USB or FireWire. Data
could potentially be extracted via many of these, but
for practical reasons a high bit rate connection is
preferred. WiFi and serial connection are therefore
the two most obvious. If the integrity of the device
itself is not critical one might also consider open-
ing the device for extraction of the internal memory
chip(s). Still one important difference is that mobile
devices are typically embedded with ”everything on
one chip” because of the size requirement. Mounting
the storage device to a write blocker and creating an
image is not as easy as with a traditional desktop or

laptop device.
Using mobile phones in forensics investigations is

not a new phenomena. Triangulation of phone posi-
tion and call logs received from the service provider
have been used in court to argue for or against the
possibility a suspect could have been involved in a
crime scene. Mobile smart phones are rapidly getting
equipped with GPS 1, high resolution cameras, mo-
tion sensors in addition to powerful computational
abilities. There have been news reports claiming
permanent storage of GPS logs on these devices [3],
and being capable of both audio and video recording
stored content could be used to further build a case.

Digital data can be extracted at different abstrac-
tion levels. A file dump would be copying files from
a file system to another. The main drawbacks are
not getting deleted (unlinked) data, slack space data
and meta data used by the file system itself. A
disk dump, often called a ”bit by bit” image would
then be copying all data off the medium. At this
level, overwritten data is still not accessible and there
might be protected areas on the medium not being
copied. Recovery and carving for deleted content is
possible. The main drawbacks of this method is that
it often requires the device to be powered off or not
in use to ensure integrity and it requires the same
amount of storage as the original. One abstraction
level lower at the physical layer even more informa-
tion might possible be recovered but are seldom used
because of the cost. Even reading the medium itself
might be difficult in certain situations like when deal-
ing with RAID or uncommon interfaces.

Preserving the integrity of the digital crime scene
objects has at least two perspectives. The first is
proving to the court no change has been introduced
during the investigation. The chain of custody is
an integral part of it. The other is avoiding any con-
tamination of possible evidence. Modifying a storage
area in order to get access might render deleted data
unrecoverable.

The terms ”rooting” and ”jailbreaking” are often
used in the context of bypassing security restrictions
on mobile devices. Rooting refers to getting root
access in a unix like environment. Jailbreaking ”es-
caping jail” is bypassing the restrictions in an iOS
device. These methods require a vulnerability to
exploit and can be applied at different abstraction
levels, during boot or withing running applications.
They can be installed temporary in memory or per-
manently installed to the storage medium.

1Global Positioning System

2

Android

3.1 Protection mechanisms

3.1.1 PIN, gesture and password

To restrict access to a device several methods can
be chosen from. These are PIN, password, and ges-
tures. A PIN is a string of digits ranging from 0-9
and four digits long. The password protections is a
variable length alphanumeric pass-phrase including
symbols. The gestures has also been widely adopted,
and is a pattern between discrete nodes.

Figure 2: A gesture lock screen on Android OS

3.1.2 Dalvik

To create secure environment to execute appli-
cations Android puts every application inside Dalvik
Virtual Machines, so that the execution environment
of every application is fully isolated. But sometimes
there is a need to share information and such mech-
anisms are provided by Content Providers sharing
data using a relational database interface. Each con-
tent provider has an associated “authority” describ-
ing the content it contains. [4].

Besides DVM, there are basic protection mecha-
nisms in Android that assign unique user and group
ID to each application, storing the application data
in dedicated place (in /data/data directory) where
only this application can access. [5]

3.1.3 Protected/hidden files

Basically, there is no build-in mechanism for pro-
tecting or hiding files in Android, but there are few
applications that can be used. Example of these can
be HideNSeek, File Cover or Top Secret [6].

3.1.4 Encryption

Official support for encryption on Android
phones have been available since Android version 3
(Honeycomb). Support for older versions are being
supplied through third party applications. Android
utilizes the 128 bit AES (Advanced Encryption Stan-
dard) algorithm. The key used for this encryption is
derived from the PIN code or a password, i.e. gesture
lock can not be used with encryption. [7] [8]

Figure 3: Android version market share, image
copied from [9]

A recent market survey indicate that more than
60% of Android phones do not support native en-
cryption in the OS. The new versions of Android
support native encryption, but it is not enabled by
default.

The most widely used version of Android is 2.3.3
with a share of 60.3%, but it tends to be changed.
Android 4.0.3 (now has a share of 15.8%) becomes
more popular every day [9].

3.2 Getting access

3.2.1 Access the device

To bypass the gesture mechanism the paper
Smudge Attacks on Smart phone Touch Screens
([10]), utilizes a non technical way to bypass the ges-
ture lock by analyzing the touch screen for grease
trail left by the users fingers as seen on figure figure
4. Even after using a phone for several minutes af-
ter an unlock, as well as after having the phone in a
pocket, smudge trails still remain viable. There are
applications trying to counteract this. [11]

Figure 4: Original and smudge pattern, image copied
from [10]

It might be possible to utilize this method on PIN
codes too, but it will be hard to use on passwords.
To bypass encryption on the phone the analyst would
need to either brute force the password or actually
get the password from the suspect. The same goes
for the PIN, password and gesture if the analyst can
not solve that through the method mentioned above.
There are a lot of commercial available phone foren-
sics tools that can help with brute forcing the PIN
code, password and gesture.

3

3.2.2 Acquiring the data

Software
The amount of data that one is able to acquire

depends if the device has been ”rooted” or not. The
methods how to root a device varies from model to
model. Gaining root access on a device usually in-
volves exploiting a device specific vulnerability in or-
der to allow users to execute the switch user (su)
command. This allows privilege escalation. [12]

In article [13] the authors described a method
which allows to forge digital alibi in automated way.
They claim it is really easy for software to simulate
user activity on a device in such a way the modifica-
tion will be hidden. That makes all evidences which
were taken from devices running Android OS ques-
tionable. No proper protection method was found.
We assume this is a hot topic in digital forensics now,
or at least should be.

Logical forensic techniques work only through file
system, so the tools can not work with unallocated
area. Since using logical techniques does not require
root access to the phone, you can apply it for any
phone and it is really easy to use such tools. The
only thing requirement is putting device in USB De-
bugging mode. Logical tools have some strict lim-
itations. The most important without having root
access only files belonging to current user can be ac-
cessed, which means copying most of the forensic rel-
evant data is restricted. Still, a lot of interesting data
are owned by the user.

Android debug bridge (ADB) is a powerful tool
that allows establishment of a connection between
the device or emulated instance. When connected to
a device, it builds a virtual network over the USB
connection and creates a server on the development
machine and a client on the phone. The SDK tool
can copy the data from phone to another computer
with pull command. Without root privilege only files
that can be accessed with normal user access rights
can be copied. Even though, such data as unen-
crypted applications, most of the tmpfs2 file systems,
and directories /proc and /sys can be of interest. [5]

Majority of forensic software implementing log-
ical technique use Content Provider to gather in-
formation. In fact, that could be enough to in-
vestigate digital crime scene. Examples of Content
Providers are call logs, phone contacts, IM messages
and SMS’s. AFLogical is software implementing a
logical technique of data acquisition and freely dis-
tributed to law enforcement agencies. It uses Con-
tent Providers to get the data and then puts all gath-
ered data into CSV3 files which can be viewed and
analyzed later. One of the files can be of great impor-
tance - info.xml which contains information about
the device such as the IMEI number. In addition,
there are a lot of commercial software such as EnCase

Neutrino, viaForensics and viaExtract, but they use
the same methods as AFLogical. They have different
features and advanced visual representation of data,
but skilled user can achieve the same results with
AFLogical.”

In contrast to the logical techniques, the physical
techniques are harder to implement, but the analyst
can get access to much more information from the
device. Both software and hardware methods can be
used. The prerequisites for using the software meth-
ods are that one must have root access to the phone.
When using physical techniques, investigators usu-
ally image the whole device with a utility such as
”dd”. Since it copies unallocated space, there is a
possibility to recover deleted data. Such a method-
ology poses a high forensic soundness since the data
are taken without any modifications and integrity
can be assured by using hash functions.

Another method, proposed in [14], uses the boot
CD concept to acquire data by using an unlocked re-
covery console or fastboot mode on the device. This
method seems forensically sound as no changes to
the operating system is made. The recovery con-
sole is used for updating the firmware on the phone.
Some manufacturers have released the unlocks for
their devices allowing a user to access fastboot mode
[15]. After the unlock of the fastboot mode or by
using a custom recovery console an analyst can run
a custom update from the SD card. This custom
update is not an update per se but can contain a
custom script that can be used to acquire data from
the android device onto the SD card.

Hardware

The Joint Test Action Group (JTAG) was cre-
ated in 1980’s as a means for testing the wiring and
interconnects on printed circuit boards. This stan-
dard is now widely accepted and today most printed
circuit boards (PCBs) have JTAG test access ports
(TAPs). The problem with using this method is that
it might be difficult to locate the TAPs on the PCBs
and trace them to the central processing unit (CPU).
The JTAG schematics that can ease the way of doing
this, are often considered confidential by the manu-
facturer. In most cases the analyst would need to
check the volt output for each tap.

To get access to the data on the device you would
have to physically connect to these tags, this can be
done through soldering. Errors in soldering to the
JTAG or applying the wrong voltage could possibly
disable and or damage the device. However if this is
done properly the phone can be reassembled and will
function normally with no data loss. All in all this
is a difficult operation and should only be done by
qualified personnel with sufficient training and expe-
rience in soldering and JTAG operations. We con-
sider forensic soundness of JTAG low because there

2Common name for temporary file storage facility on unix-like operating systems
3Comma Separated Values

4

is a possibility of changing or even losing the data
while soldering. One should use it as a last resort.

There is another method for physical acquisition
called chip-off. This is where the chip itself is re-
moved from the PCB and connected it to a special
hardware device. This method can be used on de-
stroyed devices where logical acquisition is not a pos-
sibility, however the problem here is to get the chip
off the PCB without damaging it beyond repair re-
sulting from connectors being destroyed. However,
if successful, an image of the NAND flash can be ex-
tracted [5]. The integrity of this method is as high
as it can get as long as data is not destroyed.

3.3 Data analysis

3.3.1 File System Considerations

Due to the open nature of the Android operat-
ing system, manufacturers of devices are able to cus-
tomize the configuration of the operating system to
suit their specific hardware requirements. One such
customization is the choice of file system implemen-
tation. This choice is dependent on the selected in-
ternal memory storage type.

Memory chips can either require RAW access or
more conventional BLOCK access. In case of RAW
memory, the file system has to understand the un-
derlying memory architecture and perform functions
specific to flash memory, such as wear leveling (to
prolong device lifespan). BLOCK memory on the
other hand can be accessed similarly to a more tra-
ditional hard drive and thus allows the use of con-
ventional file systems as the flash specific functions
are built into a translation layer in physical memory.
[16]

There is thus no single de facto file system be-
ing used across all devices. However, the choice is
usually limited to YAFFS (Yet Another Flash File
System) and YAFFS2 for RAW memory types, and
EXT or FAT to BLOCK memory types.

Most Android devices till date have been using ei-
ther YAFFS or YAFFS2 as their file system of choice.
However, newer devices (Android v2.3 and up) have
started to more frequently implement BLOCK mem-
ory using the EXT4 file system. [17] This shift from
YAFFS eases the work for forensic investigators, as
it allows the use of more commonly accessible, well
established commercial and open source tools.

3.3.2 Data locations

Different types of data might hold value for the
purpose of forensic analysis. Artifacts, such as pho-
tos and documents can either be stored on the inter-
nal memory of the phone, or on the SD card.

The SD card is most often the primary storage
location for data stored by the end user. It will typi-
cally use the FAT file system in order to allow access
from other operating systems. It should be a trivial
task to image and analyse it using existing forensic

software.
Device memory holds a large amount of system

protected data that is not directly accessible to the
end user. The data can only be accessed by the op-
erating system and by specific application instances.
Application data can be a key source of information
to the forensic investigator. Amongst other things,
it includes instant messages, emails, browsing his-
tory, log files, user accounts, location data and call
information.

Android systems are typically partitioned as fol-
lows [18]:

• /boot

• /system

• /recovery

• /data

• /cache

• /misc

Application data is stored in the /data parti-
tion. The path to application specific database files
normally being“ /data/data/ < applicationname >
/databases/”. This would be a good point for an in-
vestigator to start his analysis. Other areas of inter-
est on the device memory could be the /cache parti-
tion, which contains temporary application data and
/misc, which contains carrier and hardware informa-
tion. [5]

3.3.3 Data Structures

Android relies on Linux as a base operating sys-
tem, thus there are a lot of known sources of use-
ful forensic artifacts. In addition to known Linux
sources there are a few Android specific areas of in-
terest.

Application data is typically structured in
SQLite3 database files. Databases can contain any-
thing from clear text instant messages (e.g. What-
sApp), call logs and SMS messages and is a rich
source of forensic artifacts. In addition, the analy-
sis of SQLite databases obtained from physically ac-
quired images can be used to recover deleted items.
There are a number of commercial tools that can per-
form such analysis. In addition to SQLite databases,
XML files are also commonly used to store applica-
tion configuration settings and preferences. [5]

System data is typically structured in plain text
format log files, as is usual on a Linux based sys-
tem. Logs fall into three categories: kernel, system
and application logs. Kernel logs are low level logs
and mostly provides information regarding commu-
nications with hardware, they are of minor interest
to an forensic investigator. From system and appli-
cation logs the analyst can get such information as

5

geographic location, application specific details and
timestamps. [5]

When obtaining a physical bit by bit copy of
the memory device (internal NAND memory or SD
Card) it is possible to retrieve deleted artifacts by
analyzing slack space in files as well as unallocated
space on the file system. The process used to recover
such objects is called carving, whereby a search is
done for known file structures within the binary im-
age of the memory. The type of file system used
on the device will determine to a great extent how
successful such an exercise would be.

FAT and EXT file systems allow for relatively
easy analysis of unallocated space since there is a
large knowledge base detailing how these file systems
work. There are a wide range of tools available for
such analysis.

On the other hand, as previously mentioned, the
use of YAFFS can prove to be challenging. There is
currently limited support amongst forensic analysis
tools, with no existing official commercial support.
[5] In addition, YAFFS2 utilities a garbage collec-
tion function to free up blocks that will eventually
permanently delete all obsolete data on the storage
area, this could make it difficult for investigators to
recover usable data. [16] Luckily there are also some
positive points regarding YAFFS. The openness of
the file system makes it possible for an investigator
to discover its internal workings - however this could
be a time consuming process. There are also open
source carving tools, such as Scalpel that includes an-
droid configuration files in order to carve for known
file types.

3.4 Experiment

3.4.1 Setup

The group used a Samsung Gio S5660 device,
running Android version 2.3.6 (Gingerbread). The
device was restored to factory defaults prior to the
experiment and was not ”rooted”. No encryption
was present on the device as there is no native sup-
port on this version of Android. A gesture was con-
figured on the device, and for the purpose of the ex-
periment was considered to be unknown to the per-
son attempting to acquire the data.

The following tools were used: Odin 4.42, Clock-
workmod 5.0.2.7, Aroma File Manager 1.8, FTK Im-
ager 3.1.1, Windows 7 and 8

The objective of the experiment was to obtain a
physical image of the /data partition while limiting
any modification to the partition itself.

Challenges faced in acquiring the data were that
the device had an unknown gesture pattern. As well
as the fact that without modification the user would
not have root privileges on the device and would thus
not be able to access the entire /data partition di-
rectly.

The experiment was mainly based on ideas from

[19].

3.4.2 Steps taken

It was decided to install a custom recovery con-
sole in order to gain the required privileges to the
system. Clockworkmod version 5.0.2.7 (CWM) was
chosen as this would allow execution of unsigned up-
date.zip files, which would be crucial for the next
stage. In order to install a custom recovery con-
sole we had to put the device into ”download” mode
by powering it off, and then holding volume-down,
home and power buttons (this is specific to the de-
vice we were testing). No authentication was re-
quired to perform these steps, thus circumventing
the pattern lock protection. CWM was flashed to
the device’s recovery console partition through USB
using Odin 4.42 running on a Windows 7 machine,
no other partitions were altered. Next, Aroma File
Manager 1.8 (Aroma) was copied onto the device’s
SD card through a Windows 8 machine. Aroma is a
customized update.zip style package that includes a
pre-compiled ”update-binary” executable. In a nor-
mal instance, the update-binary file is responsible for
executing the update.zip script file [20]. However,
in the case of Aroma, the binary executes a simple
file manager that also gives you access to a terminal
window - all operating with recovery mode’s elevated
privileges. Aroma was then executed on the device
by using CWM’s functionality to install any unsigned
zip file from a SD card location [21].

By mounting the /data partition through CWM
and viewing the /proc/mounts file in Aroma, it
was determined that the /data partition resided on
/dev/block/stl13. In order to calculate a hash value
for data integrity assurance, the md5sum command
was performed on /dev/block/stl13 and the result-
ing hash value recorded. Then the command, dd
if=/dev/block/stl13 of=/sdcard/data.img, was is-
sued through the terminal in order to do a bit-by-
bit copy to the installed SD card. Afterwards an
md5 hash value was calculated on data.img and com-
pared to the one obtained earlier and confirmed to
be matching.

The resulting image was transferred to a Win-
dows machine running FTK Imager, where it was
imported as an image file.

• The file system was identified as FAT16.

• Unallocated space was confirmed to be present
and containing some data.

• The file structure could be traversed and
SQLite databases extracted.

3.4.3 Some considerations

Ideally a forensic analyst should use a trusted
utility, in our example a update.zip binary or script
could have been created by the analyst himself and
used to automate the acquisition. Another method

6

could be to have a signed update.zip file which could
be executed from a standard recovery console - this
would require assistance from the device manufac-
turer but would have a lower impact on the integrity
of the device. However, Aroma is an open source
project and can be reviewed to understand internal
workings. This would require the necessary skills and
would be a tedious exercise.

The live state of the device was lost as we had
to restart it in order to use CWM, possibly destroy-
ing most data that could have been obtained from
running memory.

The device used in our experiment was not en-
crypted, an encrypted device would require addi-
tional effort through brute forcing attempts and
might not be feasible in each case.

iOS

4.1 Protection mechanisms

The goal of data protection is to keep data safe
even if it is compromised by a third party. On iOS
devices encryption is bound to the device passcode.
One can access the file system only if the device is
unlocked. In other words, data protection is enabled
after user sets up a passcode. iOS supports both
four-digit and alphanumeric passcodes. According to
[22] it would take 2.5 years to break a nine-digit pass-
code using only numbers, and more than 5.5 years
to break a six-character alphanumeric passcode with
only lowercase letters and numbers.

Figure 5: A lock screen of an iPhone 4S with pass-
code, image copied from [22].

There are three main pillars of security on iOS
devices [23]:

1. a passcode, prevents unauthorized access to the
device,

2. a keychain, stores sensitive data such as Wi-Fi
passwords, Mail accounts, Safari passwords,

3. and the storage encryption.

The first iPhone was introduced in 2007. Thus,
iPhones have already been 5 years on the market.
The first iPhone ran on iOS up to the version 3.1.3
and had a crypto processor and two embedded AES
keys (GID and UID[24, p. 7]) described later in de-
tail. At that time the lockscreen was the only protec-
tion. The passcode (not its hash value) for unlocking
the device is stored in the keychain. This security
could be easily bypassed by just removing the record
from the keychain or by removing the UI setting that
asks for the passcode. Moreover, the storage encryp-
tion was not possible. The following generation of
the iOS devices, such as iPhone 3G, had no real se-
curity improvements over the first generation.

But since both the iPhone 3GS and the iOS 3.x
were introduced in 2009 every new iOS device such
as an iPad or an iPod Touch has a dedicated AES-
256 cryptographic engine4, a so called hardware AES
cryptographic accelerator. The task of the AES cryp-
tographic accelerator is to encrypt the file system on
the fly in real time.

An AES accelerator has a globally shared key
(GID Key) and a unique per-device key (UID Key).
Both these keys are not accessible to the CPU and
can be used only for encryption and decryption
through the aforementioned AES accelerator. The
UID Key helps to derive some device-specific AES
keys that are later on used to encrypt the file system
metadata and files. The GID Key is mainly used
to decrypt iOS firmware images given by Apple it-
self. In other words, it is impossible to extract the
GID and UID Keys on all iOS devices. For a normal
user it means that if an iOS device is turned off, the
copy of the encryption key in the iOS device’s ac-
cessible memory is deleted. That is why a forensics
investigator would have to try all possible keys. And
according to NSA this goal is impossible to achieve,
even if one would have access to quantum computers
[26].

With the iPhone 3GS Apple also introduced stor-
age encryption, where only the user partition was en-
crpyted. There was no improvement over the pass-
code or the keychain. In 2010 Apple released the
iPhone 4 that is shipped with the iOS 4. There is
no notable enhancement in hardware security over
iPhone 3GS, but it is a huge leap forward in software
security — the passcode was now used to compute
a passcode key. This computation is tied to a hard-
ware key. It is important to mention that the same
passcode on different devices would produce different
passcode keys. That said, off-line brute force is im-
possible since it needs the hardware key. Brute force

4Until today AES is considered as an unbreakable algorithm and was adopted as a U.S. government standard in 2001. Moreover,
the National Security Agency (NSA) has even approved AES-256 for storing top-secret data. [25]

7

attack on the device itself would be very slow. Fur-
thermore, the passcode on iOS 4 has now 3 different
types and thus three different security levels

• a four-digit passcode

• a passcode with digits only, longer than four

• an alphanumeric passcode of any length

As earlier though, only the user partition is en-
crypted. Apple also enabled per file encryption and
”too many tries protection” — if a user types in the
passcode 10 times incorrectly, the master key will
be wiped out and all the data on the device will be
unreadable.

In the iPhone 4S there were no enhancements in
hardware security over the iPhone 4. However, the
next generation of the iOS, the iOS 5 had some se-
curity improvements over the iOS 4 — all attributes
in the keychain are now encrypted, and not only the
password itself. Furthermore, a new LwVM5 parti-
tion scheme was introduced. Now it is possible to
encrypt all partitions and not only the user parti-
tion. The AES block mode was changed from CBC6

to GCM7

The iOS 6 is claimed to be the most secure version
yet. All in all, the iPhone 5 security was not exam-
ined thoroughly yet, thus it is not discussed here any
further.

4.2 Getting access

4.2.1 Disk image

The paper ”Universal, fast method for iPad foren-
sics imaging via USB adapter” [27] explains how to
use jailbreak with custom persistent software to im-
age the device, and even suggests downgrading the
iOS version as a last resort. If the goal is to extract
deleted data, then this method can not be consid-
ered to keep the integrity of the data. The authors
describe using a USB adapter intended to connect
digital cameras to speed up the rate of transfer. They
achieve a maximum speed of 15.9 MiB/s on an iPad.

In the paper ”A Novel Method of iDevice Foren-
sics without Jailbreaking” [28] dated early 2012 the
authors explain that closed source tools like Katana’s
”Lantern” and Cellebrite’s ”UFED Physical Ana-
lyzer” use exploits against bugs in iOS in order to run
unsigned code and by doing this in principle are ac-
tually jailbreaking. They then propose their method
claiming:

”Our method for imaging the iDevices
does not require jailbreaking it as the re-
quired steps for the imaging are done on
the RAM of the device hence the device
storage is not alternated in any way as
nothing is installed on it.” [28]

By definition[24, p. 20] whether data is stored
in RAM has nothing to do with the fact that the
jail has been broken to put the code in the RAM in
the first place. Still forensically speaking, in order
to preserve the integrity of the data a method that
does not write at all (or very little) to the non-volatile
memory is preferred. This example also points to a
lack of definition or understanding of the term jail-
break. The mentioned technique requires the device
to be rebooted.

Their method ([28]) uses the ”Device Firmware
Upgrade” mode of the iDevices (a term described as
a collection of devices produced by Apple) and ex-
ploits a weakness in the booting stages allowing their
code to break the chain of trust and be executed to
get root access to the specific device. A RAM disk
is prepared and loaded in memory with tools neces-
sary to dump the content via a ssh tunnel wrapped
in the USB connection. They claim the extraction to
consume less than 30 minutes. That measure must
depend on the storage size of the device. Time to
brute force any password is not described.

There are two aspects not well described, first
the authors does not explain explicitly what version
of deices they used. They specify the use of iOS
version 4.3 in the analysis section and that can be
used to look up most likely actual hardware being
iPhone 3GS, iPhone 4 or older (including iPad) [29].
The other one is that their tool is mentioned but
not available. No verification of their method was
possible because of this.

The iPhone-dataprotection tool [30] is an open
source set of tool using seemingly exactly the same
methods. It’s written by Jean Sigwald[24, p. 119] a
researcher at Sogeti ESEC Labs. It will be discussed
in greater depth in the experiment subsection.

4.2.2 iTunes ”logical” backup

This ”back door” method of getting the backup
files for the iOS device is described in [2]. Available
content would be a file by file copy of files from the
device meant to support restoration of the device
to a previous state. iTunes separate applications,
user data and ”media content”. Applications is sep-
arated since they do not contain any user data and
the ”media content” is simply a copy of files from the
iTunes library not considered necessary to back up
once more. Getting these files is as simple as find-
ing them and copying them to an external medium.
These data can be protected by any kind of full disk
or volume encryption mechanisms and by iTunes[24,
p. 131] itself.

Even if the device is locked and the key can not
be brute forced, if an instance of iTunes has been
synchronized with an iOS device iTunes will remem-
ber a token that will bypass the passcode in order to

5Lightweight Volume Manager
6Cipher-Block Chaining
7Galois Counter Mode

8

be able to perform automatic synchronization and
backup. Even changing the pin or passcode on the
device does not require a new ”handshake” between
the device and iTunes. This has been verified on
both iPhone 4S and iPad. How to deal with an
erased device, either by mistake or by will, is also
an interesting question, and not to forget the pos-
sibility of backdoors put in place by Apple [31] in
order to support regain of ”lost access”. A related
weakness is that display of SMS is allowed by default
without entering the passcode. In a setting used as a
2nd factor authentication, this weakens the potential
protection.

4.2.3 Closed source tools

A search for closed source tools reviled a huge
amount of forensics software targeting iOS. These
tools are focused on automating the process of data
extraction and develop nice looking analysis func-
tionality. They often also come with cable acces-
sories to connect to supported devices. They are not
dedicated to iOS, but are multipurpose tools.

• Oxygen Forensic Suite 2012: Support for
iPhones (including version 5), iPad (including
version 3) and iPod Touch. A freeware version
is available for 6 months [32].

• Micro Systemation XRY: The release notes for
version 6.4 claims ”logical” support for up to
iPhone5 and they mention better support for
functionality in iOS6. The ”physical” section
is empty.

• AccessData MPE+ claims to support up to
iPhone4S and iPad3, but the only ones men-
tioned physically is ”iPad” and ”iPhone” [33].
They also claim on their product page that ”No
jail breaking required” [34]

• Elcomsoft iOS Forensics Toolkit discloses a lot
of details of their support, but are restricted
then it comes to iPhone4S+ devices as they
then require the device to be jailbroken. [35]

This is a small sample of available commercial
tools, and because they are closed source, it’s diffi-
cult to determine both what exactly their claimed
methods do and whether they are true. It seems like
these tools stagger against the same ”wall” found in
the open source community when it comes to newer
iOS devices.

Development of new hardware and new iOS ver-
sions makes extraction from iOS devices a moving
target, a cat and mouse game between manufactures
and all interested in getting access. Periods of wait-
ing for new vulnerabilities to be discovered is to be
predicted even in the future [36], jailbreaks develop-
ment is fast because of high demand. Forensically
sound methods tend to lag behind but can benefit
from the same vulnerabilities found.

4.3 Data analysis

The social networking applications paper in [2]
searched for predefined data in non-encrypted iTunes
backup files (version 10.4.0.80) from 32GB iPhone 4
(version 4.3.3 8J2). They rediscovered [37] that each
applications user data on the device is backed up to a
folder identified by the unit (UDID) and named with
a 40 character (160-bit) SHA string of the ”domain”-
”full path”. The applications are backed up to a
different folder. The files do not have a file ex-
tension, except from a few *.plist and one *.mbdb
file. Using the file command on every file will reveal
JPEG images, ASCII text, XML documents, SQLite
databases, binary property lists etc. The tool plu-
til can be used to convert binary plist files to a hu-
man readable format. Some files might be base64
encoded. It is not possible to translate the files back
to the original path and name directly since SHA is
a one way function [38], but the Manifest.mbdb file
contains all the information needed to restore the
file structure. It can be parsed with a python script
found on stackoverflow [39]. An open source tool at
http://ipbackupanalyzer.com/ can be used to ana-
lyze these files in a graphical user interface.

Two open source tools iPhone backup browser
[40] (Windows) and iPhone Backup analyzer [41] can
be used to explore these files with built in decoders
of the different file formats.

iOS comes with some pre-installed applications,
while other applications has to be downloaded from
the application store. The exact structure for user
downloaded applications are application specific, but
the important thing to realize is that a user might be
using a different application than the operating. For
example, using Opera mini instead of Safari. Book-
marks and browsing history will then not be found
in the Safari specific files.

In order to analyze the dumped data support for
file system HFSX [28] is necessary. The Sleuth kit
supports HFSX [42]. Restoration of deleted data is
discussed in the experiment subsection.

4.4 Experiment

Available hardware for experimentation

• iPhone 4S (A5 chip) running iOS 6.0.1

• iPad (A4 chip) running iOS 5.1.1.

4.4.1 Backup files

The non-encrypted backup files on a MAC run-
ning MAC OS X v 10.7.5 were found in the

/Users/user/Library/Application Sup-
port/MobileSync/Backup/

folder, one sub folder for each device. The files
were transfered to Ubuntu 12.04 and hashed and
examined manually using type command, cat and
using SQLite. All images (except images inside

9

databases) were automatically previewed indepen-
dent of the lack of file extensions. iPhone Backup
analyzer was also tried. Some forensically interest-
ing things:

• /var/mobile/Media/: Photos, books, down-
loads etc

• A very long list of access WiFi networks
(com.apple.wifi.plist)

• SMS logs (sms.db)

• Notes (notes.db)

• Calendar (Calendar.sqlitedb)

• Address Book (AddressBook.sqlitedb)

• Residual thumbnails from deleted images (file
hash: 66e9dfd32df4ba531e3e45c2a0b61e8b52926433)

• Call history

• Applications storing passwords in plain text

4.4.2 Physical dumps

iphone-dataprotection [30] on Google code has
a readme file describing the steps necessary to exploit
the iOS device, transfer a binary copy of the inter-
nal drive, get the keybag, and decrypt the files. The
first part has to be performed on OSX (10.6+) since
it requires Xcode8 to prepare the bootable RAMdisk
image with the tools9

This framework is intended on devices with sim-
ilar architecture as the iPhone 3GS. Devices like
the iPad 2 and iPhone 4S has newer hardware (A5
chips), and the current tools does not have an exploit
for it, although it is being worked on [44]. iphone-
dataprotection can be used on these newer devices if
jailbroken and SSH client is downloaded via a alter-
nate application store. In addition to Xcode, the de-
vice firmware (IPSW10) and the redsn0w exploit kit
is used to create a kernelcache and the ramdisk and
they are used in the firmare upgrade mode (DFU)
to start a SSH server and brute force service on
the device. A TCP tunnel over the USB connec-
tion is opened and python scripts can be run against
it to perform different kinds of dumps. Both a dd11

of ”/dev/rdisk0s1s2” and a NAND dump are sup-
ported.

Both dump methods were tried. The
”dump data partition.sh” dd copy method was per-
formed with a speed of 8MiB/s. The default block
size was set to 8192 bit in the file and by chang-
ing it to 32768 the speed went up to 9.3MiB/s.

The file was hashed and moved to a more pow-
erful Ubuntu machine for analysis together with
the keybag from the brute force attack. A script
”emf decrypter.py” for decrypting was used on the
image decrypting it in-line the file and then another
script ”emf undelete.py” was run to find deleted files.
Two folder ”junk” and ”undelete” were populated
with 16 files each. The now plain text dump can
be mounted using a loop back device and mounting
it via ”mount” read only. Since both the iOS file
system and Ubuntu use the same file permission sys-
tem for file access, a normal user will not be able to
browse all files unless they happen to have the same
user ID. A program bindfs12 can be used to remount
the file system with every file ”world readable”.

The NAND dump had a slower transfer rate
downloading 32GiB in 95 minutes or 5.75MiB/s.
The SHA1 was shown after the dump. The image
were again moved and analyzed for deleted files with
the ”ios examiner” script. It requires the package
m2crypto available in the Ubuntu repository. Com-
pared to the 32 found files previously this method
found 62,429 files, each with a created time stamp.
The earliest files were created February 2010. 9,265
of the files were restored in 34 hours. 9,087 of them
were claimed probably OK with the difference being
files partly recovered. This demonstrates how time
consuming the task is. According to system monitor
only one core were utilized so there is a possibility
of speeding up the method. Because HSFX is jour-
naled keys for individual files with unique keys can
be found in the journal for recently deleted files, and
many files are not protected individual at all[24, p.
142].

Interesting findings are snapshots of
applications[24, p. 116 and 285] 13, old images noted
deleted a long time ago, random icons from web
surfing and deleted applications, deleted databases
(All friends from Facebook was found in a restored
sqlite database). Because of the wear leveling when
using NAND technology, writes are spread across
the medium and it is thus more likely to find old
deleted data.

8Apple’s development kit
9These files can be precomputed and tools exist for automating these methods as it will download the necessary precompiled

files from the Internet [43]
10http://osxdaily.com/2010/10/25/download-iphone-firmware-ipsw/
11dd is a common unix tool for ”dumb” bitwise copy
12http://code.google.com/p/bindfs/
13Screenshots are used to enhance the user experience to make it feel more responsive

10

Conclusion
It is clear that Apple has an advantage producing both the hardware and the software, and that the security

mechanisms contribute greatly to how easy it is to acquire data from a device. Android typically does not have
full disk encryption on by default and when it is actually used the encryption is performed in software. For
iOS a dedicated chip unavailable to the CPU has stored a version specific and device unique cryptographic key,
and as long as there is no known way to extract these keys any brute force attempt must be performed at a
slow rate on the device itself. The key hierarchy in later iOS versions has built in some back doors in order for
iTunes to access and synchronize without the user having to unlock it. Methods tried for a forensical extraction
were boot rootkits/jailbreaks because they leave the smallest footprint. On the tested Android devices a simple
dd copy was sufficient. For iOS devices open source tools could only work on iPhone 4 (GSM version), iPad 1
or older iOS devices. New devices has newer hardware where no known vulnerability were found yet. They can
still be jailbroken at the application level but that would leave a lot of traces. Even on the old devices a brute
force attack must be performed, and files must be decrypted before standard tools such as Sleuth kit can work
on them.

Extraction of data, at least from iOS devices is a moving target, a mouse and cat game where the protection
mechanisms are getting sufficiently strong, relying on a bit by bit dump is no longer practical. The same
phenomena is seen on PCs and laptops with disk encryption enabled, with the major difference being that iOS
devices have protection on by default. Referencing back to the forensics framework, maybe it is time to loosen
on the strict integrity requirement that every bit has to be preserved and instead focus on improving the chain
of custody methodologies? Other related aspects are whether or not the integrity of the device can be trusted
at all when a device is rootkitted/ jailbroken and/ or malware is found on it. The understanding of the terms
rooted and jailbroken does not explain fully what they do in terms of how persistent they can be and what they
modify on a device. A lot of commercial tools go to a great length to create simple interfaces to present content
of databases and XML structures to the user. At least for the open source tools there is still a long way to get
closer to the same level of user friendliness and functionality. Digital forensics on mobile devices is getting a
more important topic since more and more people are using mobile devices.

Future work
• Integrity considerations given root kit or malicious software

• The continued updating of current tools and automating parsing of application data

• Understanding of the term jailbreaking and rooting

Acknowledgments
Anders O. Flaglien for supervising our group and giving us relevant feedback and interesting articles to read

References

[1] E. H. S. Brian D. Carrier, “An event-based digital forensic investigation framework,” Digital Forensic
Research Workshop, 2004.

[2] A. M. Noora Al Mutawa, Ibrahim Baggili, “Forensic analysis of social networking applications on mobile
devices,” Elsevier, 2012.

11

[3] J. Cheng, “How apple tracks your location without consent, and why it matters.” http://arstechnica.

com/apple/2011/04/how-apple-tracks-your-location-without-your-consent-and-why-it-matters/.
(Visited November 2012).

[4] P. M. W. Enck, M. Ongtang, “Understanding android security.” http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=4768655&isnumber=4768640. (DOI: 10.1109/MSP.2009.26).

[5] A. Hoog, “Android forensics: Investigation, analysis and mobile security for google android,” 2011.

[6] http://www.technoon.com/how-to-hide-password-protect-multimedia-files-on-your-android-phone.

html. (Visited December 2012).

[7] Google. http://source.android.com/tech/encryption/android_crypto_implementation.html.

[8] E. Arvidson, “Encryption on the android.” http://www.ehow.com/info_12183909_

encryption-android.html.

[9] http://9to5google.com/2012/08/01/android-version-market-share-numbers-come-out-over-60-still-on-gingerbread-4-x-hits-16/.
(Visited December 2012).

[10] E. M. M. B. Adam J. Aviv, Katherine Gibson and J. M. Smith, “Smudge attacks on smartphone touch
screens.” http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf.

[11] Whispersystems, “Android and data loss protection.” http://www.whispersys.com/screenlock.html.
Visited December 2012).

[12] Wikipedia, “Android rooting.” http://en.wikipedia.org/wiki/Android_rooting. (Visited December
2012).

[13] G. C. G. D. M. A. D. S. P. Albano, A. Castiglione, “On the construction of a false digital alibi on
the android os.” http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6132892&isnumber=

6132770. (DOI: 10.1109/INCoS.2011.129).

[14] http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6042741&tag=1.

[15] B. Reid, “Unlock bootloader of any htc android device without voiding your warranty.” http://

www.redmondpie.com/unlock-nearly-all-htc-bootloaders-while-sparing-your-warranty/. (Vis-
ited December 2012).

[16] S. S. F. C. F. Christian Zimmermann, Michael Spreitzenbarth, “Forensic analysis of yaffs2.” http://subs.

emis.de/LNI/Proceedings/Proceedings195/59.pdf.

[17] crve at h online.com, “Android 2.3 gingerbread to use ext4 file system.” http://www.h-online.com/open/

news/item/Android-2-3-Gingerbread-to-use-Ext4-file-system-1152775.html.

[18] H. Q. Raja, “Android partitions explained: boot, system, recov-
ery, data, cache and misc.” http://www.addictivetips.com/mobile/

android-partitions-explained-boot-system-recovery-data-cache-misc/, 2011. (Visited November
2012).

[19] C.-T. L. Sheng-Wen Chen, Chung-Huang Yang, “Design and implementation of live sd acquisition tool in
android smart phone,” IEEEXplore, 2011.

[20] http://wiki.opticaldelusion.org, “Update-binary.” http://wiki.opticaldelusion.org/wiki/

Update-binary. (Visited December 2012).

[21] XDAdevelopers, “Aroma filemanager 1.8.” http://forum.xda-developers.com/showthread.php?t=

1646108. (Visited December 2012).

[22] Apple, “iOS Security.” http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf,
May 2012.

[23] B. Hat, Andrey Belenko, and Dmitry Sklyarov, “Evolution of iOS Data Protection and iPhone Forensics:
from iPhone OS to iOS 5.” http://media.blackhat.com/bh-ad-11/Belenko/bh-ad-11-Belenko-iOS_

Data_Protection.pdf, 2011.

12

http://arstechnica.com/apple/2011/04/how-apple-tracks-your-location-without-your-consent-and-why-it-matters/
http://arstechnica.com/apple/2011/04/how-apple-tracks-your-location-without-your-consent-and-why-it-matters/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4768655&isnumber=4768640
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4768655&isnumber=4768640
http://www.technoon.com/how-to-hide-password-protect-multimedia-files-on-your-android-phone.html
http://www.technoon.com/how-to-hide-password-protect-multimedia-files-on-your-android-phone.html
http://source.android.com/tech/encryption/android_crypto_implementation.html
http://www.ehow.com/info_12183909_encryption-android.html
http://www.ehow.com/info_12183909_encryption-android.html
http://9to5google.com/2012/08/01/android-version-market-share-numbers-come-out-over-60-still-on-gingerbread-4-x-hits-16/
http://static.usenix.org/events/woot10/tech/full_papers/Aviv.pdf
http://www.whispersys.com/screenlock.html
http://en.wikipedia.org/wiki/Android_rooting
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6132892&isnumber=6132770
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6132892&isnumber=6132770
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6042741&tag=1
http://www.redmondpie.com/unlock-nearly-all-htc-bootloaders-while-sparing-your-warranty/
http://www.redmondpie.com/unlock-nearly-all-htc-bootloaders-while-sparing-your-warranty/
http://subs.emis.de/LNI/Proceedings/Proceedings195/59.pdf
http://subs.emis.de/LNI/Proceedings/Proceedings195/59.pdf
http://www.h-online.com/open/news/item/Android-2-3-Gingerbread-to-use-Ext4-file-system-1152775.html
http://www.h-online.com/open/news/item/Android-2-3-Gingerbread-to-use-Ext4-file-system-1152775.html
http://www.addictivetips.com/mobile/android-partitions-explained-boot-system-recovery-data-cache-misc/
http://www.addictivetips.com/mobile/android-partitions-explained-boot-system-recovery-data-cache-misc/
http://wiki.opticaldelusion.org/wiki/Update-binary
http://wiki.opticaldelusion.org/wiki/Update-binary
http://forum.xda-developers.com/showthread.php?t=1646108
http://forum.xda-developers.com/showthread.php?t=1646108
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://media.blackhat.com/bh-ad-11/Belenko/bh-ad-11-Belenko-iOS_Data_Protection.pdf
http://media.blackhat.com/bh-ad-11/Belenko/bh-ad-11-Belenko-iOS_Data_Protection.pdf

[24] J. Zdziarski, Hacking and Securing iOS Applications. O’Reilly Media, first ed., 2012.

[25] NSA, “NSA Suite B Cryptography.” http://www.nsa.gov/ia/programs/suiteb_cryptography/index.

shtml, January 2009.

[26] M. Technology Review, “The iPhone Has Passed a Key Security Threshold.” http://www.

technologyreview.com/news/428477/the-iphone-has-passed-a-key-security-threshold/, August
2012.

[27] L. Gómez-Miralles and J. Arnedo-Moreno, “Universal, fast method for ipad forensics imaging via usb
adapter.,” pp. 200–207, IEEE, 2011.

[28] H. O. B. Iqbal, A. Iqbal, “A novel method of idevice(iphone,ipad,ipod) forensics without jailbreaking,”
IEEEXplore, 2012.

[29] Wikipedia, “ios version history.” http://en.wikipedia.org/wiki/IOS_version_history. (Visited
November 2012).

[30] J. Sigwald, “Automatic ssh ramdisk creation and loading.” http://code.google.com/p/

iphone-dataprotection/wiki/README. (Visited December 2012).

[31] M. Honan, “Kill the password: Why a string of characters can’t protect us anymore.” http://www.wired.

com/gadgetlab/2012/11/ff-mat-honan-password-hacker/all/. http://www.wired.com/gadgetlab/

2012/08/mat-honan-data-recovery/all/.

[32] oxygen forensic, “Oxygen forensic suite 2012 (standard) freeware.” http://www.oxygen-forensic.com/

en/freeware/. (Visited November 2012).

[33] AccessData, “Mpe+ supported devices.” http://www.accessdata.com/mpe-supported-devices. (Vis-
ited November 2012).

[34] AccessData, “Mpe+ mobile phone examiner plus.” http://www.accessdata.com/products/

digital-forensics/mobile-phone-examiner. (Visited November 2012).

[35] Elcomsoft, “Elcomsoft ios forensic toolkit.” http://www.elcomsoft.com/eift.html. (Visited November
2012).

[36] D. Madden, “iphone 5 untethered jailbreak: Cross it off your xmas wishlist.” http://www.autoomobile.

com/news/iphone-5-untethered-jailbreak-ios-6-3/1008699/. (Visited November 2012).

[37] A. Crosby, “iphone forensics without the iphone.” http://www.slideshare.net/hrgeeks/

iphone-forensics-without-the-iphone#btnNext, 2010. (Visited November 2012).

[38] S. Bommisetty, “iphone forensics – analysis of ios 5 backups.” http://resources.infosecinstitute.

com/ios-5-backups-part-1/, 2012. (Visited November 2012).

[39] StackOverflow, “How to parse the manifest.mbdb file in an ios 4.0 itunes backup.” http://stackoverflow.

com/questions/3085153/how-to-parse-the-manifest-mbdb-file-in-an-ios-4-0-itunes-backup.
(Visited November 2012).

[40] “Browse the files of local iphone/ipod backups.” http://code.google.com/p/iphonebackupbrowser/.
(Visited November 2012).

[41] M. Piccinelli, “iphone backup analyzer.” http://ipbackupanalyzer.com/. (Visited November 2012).

[42] wiki.sleuthkit.org, “Hfs.” http://wiki.sleuthkit.org/index.php?title=HFS. (Visited December 2012).

[43] http://msftguy.blogspot.no/, “Automatic ssh ramdisk creation and loading.” http://msftguy.blogspot.

no/2012/01/automatic-ssh-ramdisk-creation-and.html. (Visited December 2012).

[44] J. Sigwald, “Support for a5 devices (iphone 4s, ipad 2).” http://code.google.com/p/

iphone-dataprotection/issues/detail?id=49. (Visited December 2012).

13

http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://www.technologyreview.com/news/428477/the-iphone-has-passed-a-key-security-threshold/
http://www.technologyreview.com/news/428477/the-iphone-has-passed-a-key-security-threshold/
http://en.wikipedia.org/wiki/IOS_version_history
http://code.google.com/p/iphone-dataprotection/wiki/README
http://code.google.com/p/iphone-dataprotection/wiki/README
http://www.wired.com/gadgetlab/2012/11/ff-mat-honan-password-hacker/all/
http://www.wired.com/gadgetlab/2012/11/ff-mat-honan-password-hacker/all/
http://www.wired.com/gadgetlab/2012/08/mat-honan-data-recovery/all/
http://www.wired.com/gadgetlab/2012/08/mat-honan-data-recovery/all/
http://www.oxygen-forensic.com/en/freeware/
http://www.oxygen-forensic.com/en/freeware/
http://www.accessdata.com/mpe-supported-devices
http://www.accessdata.com/products/digital-forensics/mobile-phone-examiner
http://www.accessdata.com/products/digital-forensics/mobile-phone-examiner
http://www.elcomsoft.com/eift.html
http://www.autoomobile.com/news/iphone-5-untethered-jailbreak-ios-6-3/1008699/
http://www.autoomobile.com/news/iphone-5-untethered-jailbreak-ios-6-3/1008699/
http://www.slideshare.net/hrgeeks/iphone-forensics-without-the-iphone#btnNext
http://www.slideshare.net/hrgeeks/iphone-forensics-without-the-iphone#btnNext
http://resources.infosecinstitute.com/ios-5-backups-part-1/
http://resources.infosecinstitute.com/ios-5-backups-part-1/
http://stackoverflow.com/questions/3085153/how-to-parse-the-manifest-mbdb-file-in-an-ios-4-0-itunes-backup
http://stackoverflow.com/questions/3085153/how-to-parse-the-manifest-mbdb-file-in-an-ios-4-0-itunes-backup
http://code.google.com/p/iphonebackupbrowser/
http://ipbackupanalyzer.com/
http://wiki.sleuthkit.org/index.php?title=HFS
http://msftguy.blogspot.no/2012/01/automatic-ssh-ramdisk-creation-and.html
http://msftguy.blogspot.no/2012/01/automatic-ssh-ramdisk-creation-and.html
http://code.google.com/p/iphone-dataprotection/issues/detail?id=49
http://code.google.com/p/iphone-dataprotection/issues/detail?id=49

	Introduction
	Background
	Android
	Protection mechanisms
	PIN, gesture and password
	Dalvik
	Protected/hidden files
	Encryption

	Getting access
	Access the device
	Acquiring the data

	Data analysis
	File System Considerations
	Data locations
	Data Structures

	Experiment
	Setup
	Steps taken
	Some considerations

	iOS
	Protection mechanisms
	Getting access
	Disk image
	iTunes "logical" backup
	Closed source tools

	Data analysis
	Experiment
	Backup files
	Physical dumps

	Conclusion
	Future work

