
Protection of cryptographic key material

in modern computers

André Nordbø

Gjøvik University College 12HMISA

December 19, 2012

Abstract

This paper will look at methods for protecting keys and related key
material being actively used in modern computer systems with focus on
moving keys from memory to other locations like CPU registers, trusted
platform modules and other external hardware.

1 Introduction

This term paper is inspired by the paper ”The persistence of memory: Forensic
identification and extraction of cryptographic keys” [Maartmann-Moea et al., 2009]
presented in a forensics class where the authors show how cryptographic key ma-
terial, mostly from block ciphers like AES, Serpent and TwoFish can be carved
from an image of the RAM or paging file. In the following pages the focus
will be to describe protection or mitigation mechanisms related to protecting
cryptographic keys and the confidentiality of the key determines the trust we
can assign to how these tasks succeed.

Encryption keys are used for many purposes:

• privacy and secrecy concerns like protecting personal, corporate and gov-
ernment information stored and in communication.

• verifying identities (signing with public key encryption (PKI)).

• intellectual property protection like Digital Rights Management (DRM)1

1Privacy and DRM are actually more or less the same thing, trying to protect who is given
access to something that in itself is not a secret, as discussed in episode 387 of the ”security
now” podcast at http://twit.tv/show/security-now/378

1

It’s often seen that one of the reasons why security is easily breached on
consumer devices is because of the need for availability. The mentioned tasks
can be solved by applying cryptographic functions requiring cryptographic keys.
Keys can be symmetric in that the same key is present at the sender and re-
ceiving end and these algorithms are used for bulk encryption because they are
fast. Asymmetric algorithms have different keys for encipher and decipher op-
erations making them suitable for source verification and electronic signing as
one of the keys can be kept private while the other one can be publicly available.
Asymmetric ciphers are typically much slower2 and primarily used to exchange
symmetric keys and to sign data. The signing part can be used to build chains
of trust, as seen by the trusted root certificates found in modern operating sys-
tems. The goal of this paper is not to give a detailed overview of cryptology
but these differences in how keys are used is important. Cryptographic keys
can be used directly or indirectly protected by easy to remember passwords in
order for humans to use them, hence protection of passwords is as important as
protecting the keys.

2 Background

The tool ”Interrogate” developed by the authors of [Maartmann-Moea et al., 2009]
was developed with a forensically perspective as it is intended to work on a
off-line copy of memory. It has different search methods depending on the cryp-
tographic algorithm being used, the key size and the cryptographic application
targeted. One example of how a key can be found is the implementation related
detail that the key is stored in memory together with the corresponding key
schedule for AES in TrueCrypt3. Right in front of it to be precise. Since the
key schedule is fully deterministic given the key, this method requires walking
through the memory with a key length sliding window, calculating a key sched-
ule and comparing it with the following block of bits. If a match is found then
a very likely AES key4 is found. In case of possible bit decay in the image a
small hamming distance5 can be tolerated.

This search methods works on both AES and Serpent, but for the TwoFish
algorithm a weakness related to the entropy of the substitution boxes had to be
used to find keys. This was because the key itself was not used as part of keying
material [Maartmann-Moea et al., 2009]. It is obvious that such a search tool
would have to be tuned to match specific cryptographic applications illustrated
by the fact that inserting some random bits between the key and key schedule
in memory, or storing the key after the key schedule would result in no keys
found for this implementation. Other obscurity solutions could include splitting

2Elliptic curve based cryptology seems to be able to perform much better than RSA prime
based algorithms so this might change [Gibson and Laporte, 2012]

3TrueCrypt is a disk encryption software for Windows, Mac and Linux http://www.

truecrypt.org/docs/
4My group presented this paper, tried the mentioned python tool and retrieved keys from

TrueCrypt running in a different virtual machine and operating system
5The number of bits that must be changed to transfer one pattern to another pattern

2

http://www.truecrypt.org/docs/
http://www.truecrypt.org/docs/

the key and schedule data in smaller chunks and interleave them. Perhaps in a
random order for each installation, inspired by the way TwoFish generates a lot
of key material bigger than normal paging sizes of 4KiB resulting in splitting
across several pages [Maartmann-Moea et al., 2009]. The paper mentions using
tools to rearrange the ”random” pages in a memory dump into the virtual
address space for each process by finding the page directory base using tools
like PTfinder and Volatility.

The goal of the reviewed paper was to compare different classes of encryp-
tion schemes ”full disk”, ”virtual disk” and ”session based” with different system
states like ”live”, ”screen saver”, ”hibernation” and ”reboot” etc. Except from
the most obvious findings, it is to be noted that some applications fail in re-
moving key material from memory after use, applicable for session and ”virtual
disk” keys on dismount or session end. Another interesting finding is that keys
are recoverable even after a reboot because of residual voltage in the memory
modules.

The methods described assume the memory is already dumped. Another
paper [Rabaiotti and Hargreaves, 2010] describes how a memory dump from
an embedded gaming console (Xbox) was performed. The paper describes in
detail how a buffer overflow in the parsing of cut scene video names from a save
game were not correctly validated resulting in an exploitable buffer overrun. By
crafting a special save game, custom code could dump the shared game/kernel
memory. The paper also has a list of techniques for dumping memory on desktop
computers in the related work section:

• Dedicated PCI card: In the paper [Carrier and Grand, 2004] a specially
crafted PCI card is installed in a system prior to RAM extraction. The
card is activated by a physical switch, and will then suspend the CPU (if
possible) while it uses direct memory access (DMA) to copy the contents
of RAM to a storage device directly connected to the PCI card. The proof
of concept card ”Tribble” had trouble reading parts of RAM, the Upper
Memory Area (UMA6) reserved for video memory and BIOS.

• Low Pin Count is a bus used to connect low bandwidth devices to the
motherboard as a replacement for ISA. The idea is to use this bus to
perform DMA reads as an alternative to a dedicated PCI card.

• FireWire-1394: Basically the same kind of attack using DMA access. The
presentation [Boileau, 2006] present FireWire as an expansion bus having
direct memory access via the bus, able to address by 32-bit addresses.

”With Firewire, I can read and write main memory...
...without the OS being involved...
...because that’s how it’s meant to work.” [Boileau, 2006]

6A reason why is mentioned here: http://ntsecurity.nu/onmymind/2006/2006-09-02.html,
and caused by a write-back to a read only memory mapped region

3

The presentation also mention something very interesting, a real mode
keyboard buffer that contains the last written 16 bytes before the system
left real mode, and could possibly contain PGP or BIOS passwords. The
only good thing about FireWire is that it’s not very popular except from
high end desktops and laptops and it’s getting replaced by USB and other
buses. The question is whether they are more secure.

• Cold boot: The paper [Halderman et al., 2009a] explains how dynamic
random access memory (DRAM) retain their content for several seconds
after power is interrupted. Combined with cooling the chips to minus 50
degrees Celsius, bit decay less than 1% after 10 minutes were observed,
and the effect was more efficient the colder the chips were brought. The
test system were limited to models produced between 1999 and 2007. The
paper notes that these findings were known at least back in 1978.

• Logic analyzer: It’s described as the ”ultimate hardware approach” by
monitoring the bus between the motherboard and the memory chips in
real time, sampling the signal between the motherboard and the memory
modules and then calculating the state of the chip at a given time. The
problems mentioned it the need for storage capacity to store all this data
and time to analyze it. Equipment capable would be very expensive.

The introduction of the TRESOR paper [Müller et al., 2011] also contains
known attacks classified as ”DMA attacks” and ”cold boot attacks”. It also
mentions that most common encryption tools do not protect against these kinds
of attacks.

As long as the keys are available in memory in the system in active use,
given enough motivation and time an attack is always possible. This situation
has always been a great headache in protecting intellectual property as the
untrusted devices has to be able to play back or run the protected content. In
the situation of gaming consoles and dedicated movie players a bit more control
of the device is possible but it still needs to posses the unlocking mechanism. If
the key can not be trusted to the devices memory, can it be located somewhere
else?

In the following chapters I will write about how encryption can be run with-
out using the RAM, directly on the CPU, how a trusted platform module can
be used and how the iOS uses keys in hardware, before I conclude.

3 Perform encryption directly on CPU

The paper [Müller et al., 2011] presents the idea of moving the keys from the
main volatile memory, the random access memory (RAM) and running it di-
rectly on the central processing unit (CPU). As they mention, others have also
done similar tings, and they mention ”Loop-Amnesia” [Simmons, 2011] using
machine specific registers and ”Frozen Cache” [Pabel,] trying to control the
CPU cache between the registers and the RAM.

4

The proof of concept software TRESOR is a patch to the Linux kernel im-
plementing full disk encryption with the symmetric cipher AES to use CPU
registers only and thus avoid storing keys in the main memory. A summary of
important details follows.

As the authors explain, avoiding using the RAM is difficult. They found
that the four debug registries dr0 to dr3 on x86 CPUs used for setting break
points in hardware were seldom used. In 32 and 64 bit systems they could store
respectively 128 and 256 bit keys. AES uses 10-14 rounds each with a derived
round key. These round keys are normally precomputed and stored in RAM for
performance. Because the authors only got storage space for the master key,
they had to calculate these round keys for every block encrypted or decrypted.
Speed was a concern, but speed tests performed looked like performance was
even better than methods utilizing RAM. They thought it could be because of
time penalty of accessing RAM compared to recalculation. They utilize the new
hardware accelerated instructions available on both Intel and AMD processors
called ”AES-NI” to speed up and simplify their implementation since these
instructions can encrypt and decrypt one round AES in one CPU cycle.

TRESOR will ask for a password in kernel mode during boot. The key is
calculated by hashing several times, and during this process key material will
be present in RAM for a short while before the final key is copied into the
debug registers and the RAM content is overwritten. The key will remain in
each core’s registers as long as the system is running. The debug registers are
protected with ring 0 access. The AES-NI instructions uses 16 SSE registers
xmm0 to xmm15 to store the temporary round keys and the current round
result7. TRESSOR has to avoid these registers being written to RAM during
a context switch and thus have to make decrypting and encrypting of an AES
block an atomic operation so that resetting of content in the SSE registers can
be performed before any other process is swapped in. Scheduling is avoided
by running TRESOR in kernel mode and interrupts has to be disabled while
in the atomic state. As mentioned disabling of interrupts can be limited to a
single core. The debug registers also had to be protected so that no API call
could start a debugger that would overwrite the stored key corrupting the whole
system, and this was done by patching user space and other kernel modules.

TRESOR was then implemented as a module in the Linux kernel crypto
API that will take care of the different cipher modes as using electronic code
book (ECB) mode is known to be unsafe [Huang et al., 2011]. They had to hack
around the key management in the crypto API using a dummy key.

According to the speed tests performed by the authors in their table 1,
maximum speed without using the module were 47MiB/s on a disk copy and
when their TRESOR was used between 15-17MiB/s was achieved. This was
slightly faster than RAM based implementations of AES-NI. The benchmarking
was run on a Intel Core i7-620M CPU, a dual core at 2.66GHz8 using only one

7Even when 256 bit keys are used, as long as the block size it 128 bit then only 128 bit
chunks of the key schedule is used in a given round and thus 15*128 bit are needed of key
schedule material (initial + 14 rounds) [Ebermann, 2012].

8It has a turbo mode at 3.33GHz

5

core. Resulting in about 149 cycles per byte. Comparing these numbers with the
benchmark of AES available in Truecrypt on a CPU [Intel,] without AES-NI
yields 471MiB/s or 24.3 cycles per byte (adjusted for 4 cores). From what I can
tell, their disk benchmark should not be limited by their CPU, as the AES-NI
should perform much better than the 24.3 cycles per byte without. They also
mentions that an 128 block uses about 440 ns to encrypt on their CPU resulting
in about 9.19 cycles per byte which is closer to what should be expected.

The authors of TRASOR used tools like interrogate [Maartmann-Moea et al., 2009]
and AESKeyFinder [Halderman et al., 2009b] to look for keys in memory of
TRASOR running inside a virtual machine and they also searched for the known
key directly. No substring longer than 3 bytes (24 bit) were found. Just because
the authors did not find any leakage, does not mean no leakage is possible, as
quoted from the paper:

”we have no persuasive argument that the key never enters RAM.
Admittedly, it is unlikely that a piece of code other than context
switching swaps debug registers into RAM, but it can not be ruled
out” [Müller et al., 2011]

Other attacks discussed are attacks on the CPU itself. They argue that
unless the kernel is compiled with loadable kernel module (LKM) support or
kernel virtual memory (KMEM), even root should not be able to get access to
the cipher keys in software. In hardware one attack might be rebooting and
trying to read back the registers. This works in virtual machines, but the same
effect was not possible in real CPU’s tested with their tool Cobra ”Cold Boot
Register Attack”. Another attack mentioned in the video of ”Frozen Cache”
[Pabel,] by a commenter is to connect to the CPU using JTAG to dump state.
JTAG ports are not common on x86 CPU’s but they exists [coreboot.org,].
The commenter also comment on the x86 architecture summarizing some of the
difficulties doing hacks like these:

”The x86 is an evil architecture, that is full of flaws and it’s not
worth to do serious stuff with it” [Pabel,]

4 Move encryption away from the CPU

Lets look at how keys can be stored out of reach of the CPU. Methods described
so far have focused on disk encryption and hiding keys out of sight. The main
reason for doing encryption in software is because it’s flexible. New algorithms
can be implemented easily, bugs fixed, and dedicated hardware is often expen-
sive. Hardware can be custom build to speed up a certain algorithm, like the
AES new instructions, but then again they only speed up AES.

9(440E-9 * 2.66E9) / 128[B] given one core in use

6

4.1 TPM module

One of the main ideas behind a trusted platform module (TPM) is to have a
separate piece of hardware storing and performing cryptographic operations in
a way that is not accessible for the central processing unit (CPU) and thus
software running on the machine. The TPM is internationally standardized
by the Trusted Computing Group (TCG) former Trusted Computing Platform
Alliance (TCPA), and it was formed in 2003 [TrustedComputingGroup, 2012].
The technology had a rough start being accused of enabling media corporations
to get their needed leverage to perform Digital Rights Management (DRM)
[Stallman,]. Videos were made to inform people to rise against the ”Trusted
computing” implementation. [Stephan and Vogel,]. Today TPM chips are
found almost everywhere: In desktops, laptops, phones, pads, gaming consoles
an so on. They are cheap. In desktop and laptops the module has traditionally
been off by default, an ”opt-in” solution [Branscombe,] and has to be enabled
in the BIOS.

The chip usually contains cryptographic modules for

• Hashing

• Symmetric cryptographic operations

• Asymmetric cryptographic operations

• (true) Random number generator

• Tamper resistant storage of keys

• Input and output circuits

The idea is that the chip has a master private key (Storage Root Key) it will
never give away. A hierarchy of keys can be generated, signed and encrypted by
the trusted master key and stored on disk unreadable for the rest of the machine.
Because these chips are small and cheap, they don’t contain much memory and
not that much computational power [Wang et al., 2008, ch 3.1]. The TPM chips
are designed to be tamper resistant, although they have been compromised as
demonstrated in this video [Tarnovsky,] during Black Hat 2010. The clip is
actually quite interesting as it describes how an Infineon chip is broken down
layer by layer to figure out how to access the unencrypted data buss of the CPU
core. As noted during the clip, as technology is getting more advanced these
chips get smaller and this task is getting more difficult. Sensors are usually put
in place to detect this kind of probing and during the video we see the presenter
talk about how he has to avoid them. It was not that hard because they were
wide apart. Whats even more interesting to learn is that these chips are in
every gaming console and all the accessories like gaming pads. The gaming
industry can afford to include such authentication, but attacks on industrial
control systems like shown by the Stuxnet attack are wide open to give and
receive commands.

7

In the paper ”Password Caching and Verification Using TPM” [Wang et al., 2008]
the authors explain how traditional TPM implementations in password man-
agers will store passwords in the TPM, but retrieve them in plain text every
time they are used for verification. During this period the keys will be in RAM.
The authors goal is to implement a system, PwdCaVe, that will do the veri-
fication part in the TPM itself. Because of limited computational abilities of
the TPM the Object Independent Authorization Protocol (OIAP) is used. Now
a client can mediate a verification request from a remote server to the TPM
module.

Another issue with the TPM has to do with mobility. As the authors of
the paper ”A Portable TPM Scheme for General-purpose Trusted Computing
Based on EFI” [Han et al., 2009] argue, the existing solution is inefficient when
it comes to migration of keys from one platform to another. They propose a
portable TPM module using USB connections, thus being removable.

Microsoft has released a paper ”Towards a Verified Reference Implementa-
tion of a Trusted Platform Module” [Mukhamedov et al., 2009] discussing the
increasing set of commands available in the latest 1.2 version of the TPM spec-
ification. More than 90 is already implemented and their concern is ambiguity
in implementation as thy mention several known vulnerabilities described in the
literature. They then implemented OIAP and OSAP in F# and did a formal
verification on the code using FS2PV.

[Anderson et al., 2006]

4.2 iOS protection

The most popular smart phones and tablets are based on Apples iOS and An-
droid [Miller, 2011]. Where Android is a general operating system to be used on
different hardware from many companies, Apple has the advantage of design-
ing both the iOS operating system and the hardware it runs on. In a related
work our group [Abalenkovs et al., 2012] performed in digital forensics on mo-
bile forensics, we discovered that implementation of security features were more
dominant in iOS devices, and the newer devices has encryption keys protected
by hardware, similar to a TPM module. The book [Zdziarski, 2012] talks about
what we know of it.

There are two encryption keys in a dedicated hardware module not accessible
by the devices CPU: a key shared by all devices of that model and a key that
is unique for every phone. Because these keys cannot be extracted from the
device10, any brute force of user PIN or password must be performed on the
device, and the algorithms are designed so that brute force takes a long time
for each try. There are many derived keys used in the iOS operating system,
and files can be given different sets of protection: Files can be set to use per
file individual seeds that combined with a master keys unlocks them, other files
will only be encrypted by a master key while some files are not encrypted at

10An attack based on the physical probing [Tarnovsky,] might work but is very time con-
suming and requires deep knowledge about the chip in use

8

all. The reason must be because of convenience, as users want to be able to
receive SMS, listen to music, take photos, having alarms go off and even have
files backed up to the cloud when the device is ”locked”. Locking the phone,
removes some master keys from the device and thus rendering everything it
protects unavailable. To get access to master key(s) again, the chosen PIN is
combined with the unique hardware key. The problem however is that setting
protection class is up to the developers of ”apps” often not used, and like already
mentioned enabling cloud synchronization disables per file encryption for files
that must be synchronized while the device is locked. The shared hardware key
is used to enforce how Apple restricts unsigned applications to run.

A jailbroken iOS device simply disables the checks being performed, as they
require root access to the device by exploiting a vulnerability, either in the boot
sequence11 or within applications pre-installed by Apple running with high privi-
leges, typically the Safari browser. The paper [Gómez-Miralles and Arnedo-Moreno, 2012]
describes methodology for how such an attack can be performed.

4.3 Dedicated external hardware

If the goal of encryption is to secure communication between trusted hosts, a
solution like the Thales TCE621 [Thales,] can be used. It is approved up to
NATO CTS level using the NICE algorithm and it can also use the AES encryp-
tion algorithm only allowed up to NATO secret. It’s usually put as a gateway
to allow two or more internal local area networks (LAN) to communicate over
untrusted communication links. Keys can be loaded locally and remotely, it’s
shielded against releasing any revealing electromagnetic radiation and it even
got a removable card rendering the unit inoperable when removed. Because the
unit only encrypts and decrypts IP packages one could argue attacking it from
the outside and physically is very difficult. Still one have to trust all the nodes
on the inside to behave. Of course this unit is not for sale to anybody and prob-
ably expensive so it’s not a general solution to the problem but it illustrates a
different way to handle the problem.

4.4 Safe key entry

Even if the machine is able to keep encryption keys hidden while in use, one
weak link is how to get the key into the machine in a safe way. Many protection
systems rely on keyboard input, and depending on the operating system it is
known that implementing a sniffer in user land is possible by subscribing to
keyboard events. Windows is using the CTRL ALT DEL combination to put
the machine in kernel mode to protect the entry from these loggers. TRESOR

11Our group tried an exploit called ”limera1n” on an iPad1 to gain a shell, used the tools
provided with iphone-dataprotection [Sigwald,], brute forced an easy 4 digit PIN, copied the
whole NAND memory and carved for files not encrypted. We found several thousand files.
Carving for per file encrypted files would not be possible as the seed is simply removed when
the file is deleted. It’s also worth mentioning that file table is not encrypted itself, so that file
names and modified times are available without decrypting the file system image. It’s only
the file content that is encrypted.

9

as mentioned earlier does something similar as it asks for the password before
the user land applications are allowed to start. Other methods could include
importing keys in an encrypted form from a third party via smart cards or USB
dongles.

5 Conclusion

Keeping cryptographic keys in memory can be exploited in several ways, from
using buffer overruns to physical cold boot attacks. It has been shown that keys
can be kept hidden inside CPU registers with the TRESOR implementation,
but it’s a kind of a hack and has some drawbacks in terms of compatibility. The
trusted platform module is available as a tamper resistant hardware solution to
keep keys protected and available in most new computer systems. It does not
have much memory or processing power, but that will probably change in time
as the demand increases. As seen with the latest products from Apple, phones
and pads are equipped with hardware similar with TPM modules keeping device
unique keys that have the potential of providing good security if implemented
and used correctly. Simply having a TPM module does not give any protection,
it’s the way it’s being used and if it’s enabled at all. Lastly key input must
be protected, and it’s related to the convenience of availability as people want
to avoid proving themselves all the time and they want features available even
when the device is locked like receiving messages and listening to music.

6 Related work

Other interesting implementations to keep encryption keys secure can be seen in
how some software vendors deliver dedicated dongles, often USB, that perform
some cryptographic verification or even do some of the calculations on the device
while the protected program is in use. Similar external modules can be made
to house private keys for web servers to avoid hacking attacks resulting in loss
of sensitive private keys.

References

[Abalenkovs et al., 2012] Abalenkovs, D., Bondarenko, P., Patha-
pati, V. K., Nordbø, A., Piatkivskyi, D., Rekdal, J. E., and
Ruthven, P. B. (2012). Mobile forensics: Comparison of ex-
traction and analyzing methods of ios and android. url-
https://docs.google.com/open?id=0ByhZsNbhNQqXazd4eURvQnlzRFE.

[Anderson et al., 2006] Anderson, R., Bond, M., Clulow, J., and Skoroboga-
tov, S. (2006). Cryptographic processors-a survey. Proceedings of the IEEE,
94(2):357 –369.

10

[Boileau, 2006] Boileau, A. (2006). Hit by a bus: Physical access attacks with
firewire. http://www.security-assessment.com/files/presentations/

ab_firewire_rux2k6-final.pdf (Visited Dec 2012).

[Branscombe,] Branscombe, M. Trusting the trusted plat-
form module. http://www.tomshardware.com/reviews/

hardware-based-security-protects-pcs,1771-2.html visited Dec
2012.

[Carrier and Grand, 2004] Carrier, B. D. and Grand, J. (2004). A hardware-
based memory acquisition procedure for digital investigations. Digit. Inves-
tig., 1(1):50–60.

[coreboot.org,] coreboot.org, W. Jtag/bsdl guide. http://www.coreboot.

org/JTAG/BSDL_Guide (Visited Dec 2012).

[Ebermann, 2012] Ebermann, P. (2012). How does the key schedule of rijndael
looks for keysizes other than 128 bit? http://crypto.stackexchange.com/

a/2496.

[Gibson and Laporte, 2012] Gibson, S. and Laporte, L. (2012). Elliptic curve
crypto. http://twit.tv/show/security-now/374 Visited Descender 2012.

[Gómez-Miralles and Arnedo-Moreno, 2012] Gómez-Miralles, L. and Arnedo-
Moreno, J. (2012). Versatile ipad forensic acquisition using the apple camera
connection kit. Comput. Math. Appl., 63(2):544–553.

[Halderman et al., 2009a] Halderman, J. A., Schoen, S. D., Heninger, N., Clark-
son, W., Paul, W., Calandrino, J. A., Feldman, A. J., Appelbaum, J., and
Felten, E. W. (2009a). Lest we remember: cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91–98.

[Halderman et al., 2009b] Halderman, J. A., Schoen, S. D., Heninger, N., Clark-
son, W., Paul, W., Calandrino, J. A., Feldman, A. J., Appelbaum, J., and
Felten, E. W. (2009b). Lest we remember: cold-boot attacks on encryption
keys. Commun. ACM, 52(5):91–98. Source: https://citp.princeton.edu/
research/memory/code/.

[Han et al., 2009] Han, L., Liu, J., Zhang, D., Han, Z., and Wei, X. (2009). A
portable tpm scheme for general-purpose trusted computing based on efi. In
Multimedia Information Networking and Security, 2009. MINES ’09. Inter-
national Conference on, volume 1, pages 140 –143.

[Huang et al., 2011] Huang, C.-W., Tu, Y.-H., Yeh, H.-C., Liu, S.-H., and
Chang, C.-J. (2011). Image observation on the modified ecb operations in
advanced encryption standard. In Information Society (i-Society), 2011 In-
ternational Conference on, pages 264 –269.

11

http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://www.tomshardware.com/reviews/hardware-based-security-protects-pcs,1771-2.html
http://www.tomshardware.com/reviews/hardware-based-security-protects-pcs,1771-2.html
http://www.coreboot.org/JTAG/BSDL_Guide
http://www.coreboot.org/JTAG/BSDL_Guide
http://crypto.stackexchange.com/a/2496
http://crypto.stackexchange.com/a/2496
http://twit.tv/show/security-now/374
https://citp.princeton.edu/research/memory/code/
https://citp.princeton.edu/research/memory/code/

[Intel,] Intel. Core™2 q6600. http://ark.intel.com/products/

29765/Intel-Core2-Quad-Processor-Q6600-8M-Cache-2_

40-GHz-1066-MHz-FSB.

[Maartmann-Moea et al., 2009] Maartmann-Moea, C., Thorkildsenb, S., and
Årnes, A. (2009). The persistence of memory: Forensic identification and
extraction of cryptographic keys. ScienceDirect. http://dx.doi.org/10.

1016/j.diin.2009.06.002.

[Miller, 2011] Miller, C. (2011). Mobile attacks and defense. Security Privacy,
IEEE, 9(4):68 –70.

[Mukhamedov et al., 2009] Mukhamedov, A., Gordon, A. D., and Ryan, M.
(2009). Towards a verified reference implementation of a trusted platform
module.

[Müller et al., 2011] Müller, T., Freiling, F. C., and Dewald, A. (2011). Tresor
runs encryption securely outside ram. In Proceedings of the 20th USENIX
conference on Security, SEC’11, pages 17–17, Berkeley, CA, USA. USENIX
Association.

[Pabel,] Pabel, J. Frozen cache. http://blog.akkaya.de/jpabel/2010/12/

31/After-the-FrozenCache-presentation.

[Rabaiotti and Hargreaves, 2010] Rabaiotti, J. and Hargreaves, C. (2010). Us-
ing a software exploit to image ram on an embedded system. ScienceDirect.
http://dx.doi.org/10.1016/j.diin.2010.01.005.

[Sigwald,] Sigwald, J. Automatic ssh ramdisk creation and loading. http://

code.google.com/p/iphone-dataprotection/wiki/README. (Visited De-
cember 2012).

[Simmons, 2011] Simmons, P. (2011). Security Through Amnesia: A Software-
Based Solution to the Cold Boot Attack on Disk Encryption. ArXiv e-prints.

[Stallman,] Stallman, R. Can you trust your computer? http://www.gnu.

org/philosophy/can-you-trust.html visited Dec 2012.

[Stephan and Vogel,] Stephan, B. and Vogel, L. Trusted computing, an ani-
mated short. http://www.lafkon.net/tc/ visited Dec 2012.

[Tarnovsky,] Tarnovsky, C. Deconstruction a ’secure’ processor at black hat
2010. https://media.blackhat.com/bh-dc-10/video/Tarnovsky_Chris/

BlackHat-DC-2010-Tarnovsky-DeconstructProcessor-video.m4v visited
Dec 2012.

[Thales,] Thales. Tce 621 - high assurance ip encryption for nato. http:

//www.thales.no/pub/sites/index.php?siteID=23 (Visited Dec 2012).

12

http://ark.intel.com/products/29765/Intel-Core2-Quad-Processor-Q6600-8M-Cache-2_40-GHz-1066-MHz-FSB
http://ark.intel.com/products/29765/Intel-Core2-Quad-Processor-Q6600-8M-Cache-2_40-GHz-1066-MHz-FSB
http://ark.intel.com/products/29765/Intel-Core2-Quad-Processor-Q6600-8M-Cache-2_40-GHz-1066-MHz-FSB
http://dx.doi.org/10.1016/j.diin.2009.06.002
http://dx.doi.org/10.1016/j.diin.2009.06.002
http://blog.akkaya.de/jpabel/2010/12/31/After-the-FrozenCache-presentation
http://blog.akkaya.de/jpabel/2010/12/31/After-the-FrozenCache-presentation
http://dx.doi.org/10.1016/j.diin.2010.01.005
http://code.google.com/p/iphone-dataprotection/wiki/README
http://code.google.com/p/iphone-dataprotection/wiki/README
http://www.gnu.org/philosophy/can-you-trust.html
http://www.gnu.org/philosophy/can-you-trust.html
http://www.lafkon.net/tc/
https://media.blackhat.com/bh-dc-10/video/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DeconstructProcessor-video.m4v
https://media.blackhat.com/bh-dc-10/video/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DeconstructProcessor-video.m4v
http://www.thales.no/pub/sites/index.php?siteID=23
http://www.thales.no/pub/sites/index.php?siteID=23

[TrustedComputingGroup, 2012] TrustedComputingGroup (2012).
Trusted computing group (tcg) timeline - february 2011. http:

//www.trustedcomputinggroup.org/files/resource_files/

B8FF1287-1A4B-B294-D0423684DEB619FD/TCG%20Timeline_rev%20Feb%

202011.pdf visited Dec 2012.

[Wang et al., 2008] Wang, H., Guo, Y., Zhao, X., and Chen, X. (2008). Keep
passwords away from memory: Password caching and verification using tpm.
In Advanced Information Networking and Applications, 2008. AINA 2008.
22nd International Conference on, pages 755 –762.

[Zdziarski, 2012] Zdziarski, J. (2012). Hacking and Securing iOS Applications.
O’Reilly Media, first edition.

13

http://www.trustedcomputinggroup.org/files/resource_files/B8FF1287-1A4B-B294-D0423684DEB619FD/TCG%20Timeline_rev%20Feb%202011.pdf
http://www.trustedcomputinggroup.org/files/resource_files/B8FF1287-1A4B-B294-D0423684DEB619FD/TCG%20Timeline_rev%20Feb%202011.pdf
http://www.trustedcomputinggroup.org/files/resource_files/B8FF1287-1A4B-B294-D0423684DEB619FD/TCG%20Timeline_rev%20Feb%202011.pdf
http://www.trustedcomputinggroup.org/files/resource_files/B8FF1287-1A4B-B294-D0423684DEB619FD/TCG%20Timeline_rev%20Feb%202011.pdf

	Introduction
	Background
	Perform encryption directly on CPU
	Move encryption away from the CPU
	TPM module
	iOS protection
	Dedicated external hardware
	Safe key entry

	Conclusion
	Related work

